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Abstract

We have developed a new simulation method to estimate the distance between the native state

and the first transition state, and the distance between the intermediate state and the second

transition state of a protein which mechanically unfolds via intermediates. Assuming that the

end-to-end extension ∆R is a good reaction coordinate to describe the free energy landscape

of proteins subjected to an external force, we define the midpoint extension ∆R
∗ between two

transition states from either constant-force or constant loading rate pulling simulations. In the

former case, ∆R
∗ is defined as a middle point between two plateaus in the time-dependent curve

of ∆R, while, in the latter one, it is a middle point between two peaks in the force-extension

curve. Having determined ∆R
∗, one can compute times needed to cross two transition state

barriers starting from the native state. With the help of the Bell and microscopic kinetic theory,

force dependencies of these unfolding times can be used to locate the intermediate state and to

extract unfolding barriers. We have applied our method to the titin domain I27 and the fourth

domain of Dictyostelium discoideum filamin (DDFLN4), and obtained reasonable agreement with

experiments, using the Cα-Go model.
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I. INTRODUCTION

Despite numerous advances achieved within recent years [1], deciphering the free energy

landscape (FEL) of biomolecules remains a challenge to molecular biology. The most detailed

information on the FEL may be gained from all-atom simulations, but this approach, due

to its high computational expenses, is restricted to rather short peptides and proteins [2, 3].

In this situation, the AFM [4] or optical tweezers [5] have been proved a very useful tool

for probing the FEL of proteins. In most experiments [6, 7], assuming that mechanical

unfolding is well described by a two-state scenario, one can extract the distance xu between

the native state (NS) and the transition state (TS), as well as the unfolding barrier ∆G‡.

Latest theoretical studies [8, 9, 10] showed that simple coarse-grained models can provide

reasonable estimates for those quantities.

In recent experimental works [11, 12], the FEL of three-state proteins has been studied. A

schematic plot of the FEL for this class of proteins is shown in Fig. 1. Single molecule force

measurements allow the distance xu1 between the native and the first transition state (TS1)

and the distance xu2 between the intermediate state (IS) and the second transition state

(TS2) to be evaluated. The unfolding barriers ∆G‡
1

= GTS1 −GNS and ∆G‡
2

= GTS2 −GIS

can also be determined. As far as we know, there were no theoretical attempts to calculate

these important parameters. Therefore, the goal of this work is to develop a new method

for computing them from simulations. Using the Go model [13] and our new method, we

calculated the free energy landscape parameters for the three-state titin domain I27 and the

domain DDFLN4. Our results are in reasonable agreement with the experiments [11, 12].

II. METHOD

The new method is based on the fact that the end-to-end extension, ∆R, is a good reaction

coordinate for describing mechanical unfolding. It should be noted that the direction of the

force and therefore ∆R is changing upon partial unfolding of a protein. The time τu1 for a

molecule to go from the NS to the IS is defined as a time needed to achieve the intermediate

point ∆R∗ between the TS1 and TS2 (Fig. 1). The time to cross the TS2 barrier starting

from the IS, τu2, is a time to reach the rod state starting from ∆R∗. We propose to determine

∆R∗ from either constant-force or constant loading rate pulling simulations. Using the force
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dependencies of τu1 and τu2, and the Bell formula [14], we can extract xu1 and xu2. The

unfolding barriers ∆G‡
1

and ∆G‡
2

can be estimated in the framework of the microscopic

kinetic theory [15].

To illustrate our method, we used the Go model [13], which is an appropriate choice

not only because the construction of FEL for long enough biomolecules by all-atom models

is beyond present computational facilities, but also because unfolding of biomolecules is

mainly governed by the native conformation topology [8]. Moreover, it has been recently

shown [9, 10] that the Go model provides reasonable estimates for xu and ∆G‡ in the two-

state approximation and is expected to be applicable to three-state molecules. Details of

the Go model are given in our previous works [9, 10]. We use the same set of parameters as

for Go modeling of ubiquitin [16]. The main computations were carried out at T = 285 K

= 0.53ǫH/kB, where kB is the Boltzmann constant, and ǫH = 0.98 kcal/mol is the hydrogen

bond energy. The friction γ0 was chosen to be the same as for water, i.e. γ0 = 50ma

τL

[17],

where τL = (maa
2/ǫH)1/2 ≈ 3 ps. Here the characteristic bond length between successive

beads a ≈ 4Å and the typical mass of amino acid residues ma ≈ 3 × 10−22 g [17]. For the

water viscosity, one can neglect the inertia term and use the Euler method with the time

step ∆t = 0.1τL to solve the corresponding Langevin equation.

Since native titin is a highly heterogeneous polymer, in experiments, one used a poly-

protein composed of identical tandem repeats of the Ig module (I2712 [11, 18, 19]) to study

elastic properties of a single domain at high solution. In the DDFLN4 case, a single DDFLN4

domain is sandwiched between Ig domains I27-30 and domains I31-34 from titin [20]. Un-

folding of DDFLN4 can be easily studied, as its mechanical stability is much lower than that

of Ig-domains (DDFLN4 would have lower peaks in the force-extension curve). In AFM ex-

periments, one end of a poly-protein is anchored to a surface and the another end to a tip

of a very soft cantilever. The molecule is stretched by increasing the distance between the

surface and the cantilever as the external force acts on one of termini via the tip. Because

a poly-protein mechanically unfolds domain by domain, one can consider that one end of

a single domain is anchored and the force is applied to the another one. Therefore, as in

all-atom steered molecular dynamics simulations [21], when the force is ramped linearly with

time, we fix the N-terminal and pull the C-terminal by applying a force f = Kr(vt − r).

Here r is the displacement of the pulled atom from its original position [21], and the spring

constant Kr is set to be the same as in the harmonic term of the potential energy for the
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studied system [13, 16]. The pulling direction was chosen along the vector directed from the

fixed atom to the pulled one. The pulling speed was set equal to v = 3.6× 107 nm/s, which

is about 3 - 4 orders of magnitude faster than those used in experiments. In the constant

force simulations, we add the term −~f ~R to the total energy of the system, where R is the

end-to-end distance, and f the force applied to the both termini.

We define the unfolding time τu1 as an average of the first passage times needed to reach

the extension ∆R∗. Different trajectories start from the same native conformation, but with

different random number seeds. The unfolding time τu2 is an average of the first passage

times needed for the molecule to achieve the rod state starting from the extension ∆R∗. In

order to get a reasonable estimate for τu1 and τu2, we have generated 30 - 50 trajectories for

each value of f .

III. RESULTS

The crucial point in our method is how to determine ∆R∗. We will show that both

simulation ways specified above are valid for this purpose.

Determination of ∆R∗ for I27

Fig. 2a presents the force-extension curve obtained at the speed v = 3.6 × 107 nm/s. In

accordance with the experiments [19] and all-atom simulations [21], we observe two peaks,

which ascertain that unfolding proceeds via intermediates (if the protein unfolded without

intermediates, a single peak would be observed). The first peak, located at ∆Rmax1 ≈ 8

Å, occurs due to a detachment of strand A (Fig. 2a) from the protein core. One can show

that the appearance of the second peak at ∆Rmax2 ≈ 78 Å is related to full unfolding of

strands A’, F, and G. Assuming that ∆R∗ is a middle point between two local peaks, we

have ∆R∗ = (∆Rmax1 + ∆Rmax2)/2 ≈ 43 Å.

We now intend to show that ∆R∗ can also be determined from constant-force simulations.

As is evident from Fig. 2(b), two plateaus occur at ∆Rp1 ≈ 6 Å and ∆Rp2 ≈ 78 Å in the

time dependence of ∆R(t). Within error bars, locations of plateaus coincide with those for

peaks shown in Fig. 2(a). Again, the occurrence of two plateaus indicates that this domain

mechanically unfolds in a three-state manner. Since the plateaus are related to crossing the
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unfolding barriers ∆G‡
1

and ∆G‡
2
, the middle point ∆R∗ between the TS1 and TS2 can be

identified as a middle point between two plateaus, i.e. ∆R∗ ≈ (∆Rp1 + ∆Rp2)/2. For I27,

∆R∗ ≈ 42 Å, which is close to the result, obtained by constant-velocity pulling simulations.

Determination of ∆R∗ for DDFLN4

Fig. 3b shows the force-extension profile for the same pulling speed as in the I27 case.

Two peaks appear at ∆Rmax1 ≈ 14 and ∆Rmax2 ≈ 92 Å. Using these values, we obtain

∆R∗ = (∆Rmax1 + ∆Rmax2)/2 = 53 Å. The existence of intermediates is also evident from

the constant force simulations which give two plateaus at ∆Rp1 ≈ 7 Å and ∆Rp2 ≈ 85 Å

(Fig. 3b). Therefore, ∆R∗ = (∆Rp1 + ∆Rp2)/2 ≈ 46Å which is not far from the value

followed from the force-extension curve. Since the peaks are not sharp and the plateau

position fluctuates, one can consider that two simulation modes gave the same result. We

will use the averaged value ∆R∗ = 50Å for computing τu1 and τu2 for DDFLN4.

In accordance with the experiments [12, 20], the Go model captures the overall behavior

of DDFLN4 that it mechanically unfolds via intermediates. However, the location and

structure of Go intermediates are different from the experimental ones. In the experimental

force-extension curve [20], two peaks occurs at ∆Rp1 ≈ 150Å and ∆Rp2 ≈ 310Å which are

very different from our results (Fig. 3a). Using loop mutations [20], it was suggested that

during the first unfolding event (first peak) strands A and B detach from the domain and

unfold. Therefore, strands C - G form a stable intermediate structure, which then unfolds

in the second unfolding event (second peak). In order to sort out intermediates in the Go

model, we plot fractions of native contacts formed by each strand with the rest of the protein

as a function of ∆R (Fig. 4a). Here, we present the results obtained for the case when the

N-terminal is kept fixed and the force is applied to the C-terminal with the same loading rate

as in Fig. 3a. At the position of the first peak in the force-extension curve (∆R = 14Å ),

strand G fully unfolded, while strands A and B are still structured (Fig. 4a). Thus, contrary

to the experiments [12, 20], Go intermediate conformations consist of six strands A-F. A

typical snapshot of intermediates is shown in Fig. 4b, where all contacts between G and

F are broken, but a single contact between A and F remains intact. At the second peak

position (∆R = 92Å ) denoted by an arrow in Fig. 4a, together with G, strand F becomes

unstructured and most of contacts of strand C are lost. The number of contacts of strands
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A, B, D and E drops drastically as the protein unfolds quickly after this second unfolding

event. As in the experiments [12, 20], at ∆R ≈ 150Å , strands A and B are detached from

the core, but in our Go model, strands F and G have already unfolded.

From Fig. 4a, we obtain the following unfolding pathway for DDFLN4:

G → F → A → B → (E,D,C). (1)

In addition to this dominant pathway, other routes to the rode state are also possible (Fig.

4c). Mechanical unfolding pathways may be different, but they share a common feature that

strand G always unfolds first. This also contradicts the experimental suggestion [20] that

unfolding initiates from the N-terminal. It is not entirely clear, why the Go model gives dif-

ferent unfolding pathways and intermediates compared to the experiments. Presumably, the

discrepancy comes from the simplification of Go modeling, where the non-native interaction

and the effect of environment are omitted. All-atom simulations are required to clarify this

issue.

Calculation of free energy landscape parameters

Once ∆R∗ is found, one can compute the times τu1 and τu2 as the functions of the external

force f and extract xu1 and xu2, using the Bell equation [14]:

τui = τ 0

ui exp(−fxui/kBT ), i = 1, 2. (2)

We have tried several values of ∆R∗ in the interval ∆R∗ = (42±15) Å, and ∆R∗ = (50±15)Å

for I27 and DDFLN4, respectively. Since the results remain essentially the same, we will

present those obtained for ∆R∗ = 42 Å, and ∆R∗ = 50Å for I27, and DDFLN4, respectively.

Fig. 5 shows the force dependencies not only for τu1 and τu2, but also for the full unfolding

time τu = τu1 + τu2. Strictly speaking, the formula τu = τu1 + τu2 is valid if the probability

of missed unfolding events is negligible. This happens when the applied force exceeds several

pN, but not in the f → 0 limit [22]. Since our computations were carried out at f of tens

pN (Fig. 5), the mentioned above equality is applicable to extract τu.

For I27, τu1 is about 2-3 times larger than τu2. It is also evident from Fig. 2(b), which

demonstrates that the second plateau exists during shorter time intervals than the first one.

A similar situation happens for DDFLN4, but, for high forces, τu2 becomes eventually larger

than τu1 (Fig. 5(b)).
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In the low-force regime, fitting the data by Bell Eq. (2) (straight lines in Fig. 5), we

obtain xu1, and xu2 quoted in Table. For both I27 and DDFLN4 our estimate of xu2 agrees

very well with the experiments, while that for xu1 is a bit higher than the experimental

data. Given the simplicity of the Go model, the agreement between the theory and the

experiment should be considered reasonable, but it would be interesting to check if a more

comprehensive account for non-native contacts and environment could improve our results.

It is to be noted here that although the Go model gives a different location of intermediates

in the DDFLN4 force-extension curve in comparison with the experiments, it still provides

reasonable estimates for xu1 and xu2. This is because the nature of xu1 and xu2 is different

from that of the end-to-end distance: the former are a measure of the force dependence of

barrier crossing rates, while the later is a real distance. Nevertheless, one has to be careful

in comparison of Go results with experiments on DDFLN4.

In the Bell approximation, one assumes that the location of the transition state does

not move under the action of an external force. However, our simulations for ubiquitin,

e.g., showed that it does move toward the NS [16]. Recently, assuming that xu depends on

the external force and using the Kramers theory, several groups [15, 22] have tried to go

beyond the Bell approximation. We follow Dudko et al. who proposed the following force

dependence for the unfolding time [15]:

τu = τ 0

u

(

1 −
νxu

∆G‡

)1−1/ν

exp{−
∆G‡

kBT
[1 − (1 − νxuf/∆G‡)1/ν ]}. (3)

Here, ∆G‡ is the unfolding barrier, and ν = 1/2 and 2/3 for the cusp [23] and the linear-cubic

free energy surface [24], respectively. Note that ν = 1 corresponds to the phenomenological

Bell theory (Eq. (2)). An important consequence following from Eq. (3), is that one can

apply it to estimate not only xu, but also G‡, if ν 6= 1. Since the fitting with ν = 1/2 is valid

in a wider interval as compared to the ν = 2/3 case, we consider the former case only. The

region, where the ν = 1/2 fit works well, is expectedly wider than that for the Bell scenario

(Fig. (5)). However, for DDFLN4 this fit can not cover the entire force interval.

In the I27 case, from the nonlinear fitting (Eq. (3) and Fig. 5(a)), we obtain xu1 = 4.7 Å,

and xu2 = 5.1 Å , which are larger than the Bell theory-based estimations (see Table). Using

raw experimental data [18] and fitting with ν = 1/2, in two-state approximation, Dudko

et al. [15] obtained xu = 4Å;, which is close to our result. For DDFLN4, the nonlinear fit

(Fig. 5(b)) gives xu1 = 13.1 Å, and xu2 = 12.8Å which are about twice as large as the Bell
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theory-based estimates (Table). Such high values of xu are typical for α-proteins and they

may come from the low resistance of DDFLN4 because the less stable protein, the larger

is xu [9]. Recently, Dietz and Rief [25] have shown that the product fuxu ≈ 50 pN nm is

probably universal for all proteins. Using the experimental result fu ≈ 45 pN [20, 22] and

xu ≈ 13Å , we obtain fuxu ≈ 59 pN nm which is not far from this universal value. From

this point of view, big values of xu1 and xu2 are still acceptable, but additional experimental

data are required to settle this problem.

Theoretical values for G‡
1
, and G‡

2
, followed from Fig. 5, are listed in Table. To estimate

the unfolding barriers from the available experimental data for I27 [11] and DDFLN4 [12, 22],

we used the following formula:

∆G‡ = −kBT ln(τA/τ 0

u), (4)

where τ 0

u denotes the unfolding time in the absence of force, and τA is a typical unfolding

prefactor. Since τA is not known for unfolding, we used the value typical of folding, τA =

0.1µs [26, 27, 28].

For I27, we used τ 0

u2
= (3)−1 × 104s and total unfolding time τ 0

u = (2.9)−1 × 104s [11].

τ 0

u1
is extracted as τ 0

u1
= τ 0

u − τ 0

u2
. Using these unfolding times and Eq. (4), G‡

1
, and G‡

2

were calculated (Table). The best agreement between theory and experiment is obtained

for G‡
2
. Interestingly, using the similar fitting procedure and raw experimental data [18],

in two-state approximation, Dudko et al. [15] obtained G‡ = 20kBT , which is close to our

result.

In the DDFLN4 case, we used τ 0

u1
= (0.28)−1s and τ 0

u2
= (0.33)−1s of [12] to estimate

G‡
1

and G‡
2
. Our result for ∆G‡

2
agrees well with the experimental data, but the theoretical

value for ∆G‡
1

turned out higher than the experimental one. This disagreement may be

due to the limitation of the Go model. An another possible reason is that the experimental

estimations were obtained using the same prefactor τA = 0.1µs for all cases and this might

be invalid.

To conclude, we have proposed a new simulation approach to delineate the FEL of multi-

state proteins. Our method is simple to use, and it does not require any extra CPU cost,

because the unfolding times τu1, and τu2 are computed in a single run for every trajectory.

Using this method and the simple Go model, we obtained xu1, and xu2, which are in reason-

able agreement with the experimental data for I27 [11] and DDFLN4 [12, 22]. There is a
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discrepancy between theoretical and experimental estimations for some unfolding barriers.

Therefore, it would be useful to go beyond the Go model to see if one could obtain better

agreement. Our method is universal and may be applied to other multi-state biomolecules.

The work in this direction is in progress. One can also extend our approach to the case of

folding under quenched force for computing folding barriers.
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xu1(Å) xu2(Å) ∆G‡
1
/kBT ∆G‡

2
/kBT

I27 Theory 3.2 ± 0.1 3.0 ± 0.1 16.9 17.0

Exp. [11] 2.2 3.0 20.9 24.2

DDFLN4 Theory 6.1 ± 0.2 5.1 ± 0.2 25.8 18.7

Exp. [12, 22] 4.0 ±0.4 5.3 ± 0.4 17.4 17.2

Table. Parameters xu1, and xu2 were obtained in the Bell approximation. Theoretical

values of the unfolding barriers were extracted from the microscopic theory of Dudko et al

[15] (Eq. (3)) with ν = 1/2, while their experimental estimates were obtained using Eq. (4)

and τA = 0.1µs.
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Figure Captions

FIGURE 1. Schematic plot of the free energy landscape for a three-state protein as a

function of the end-to-end distance. xu1 and xu2 refer to the distance between the NS

and the first transition state (TS1) and the distance between the intermediate state (IS)

and the second transition state (TS2). The unfolding barrier ∆G‡
1

= GTS1 − GNS and

∆G‡
2

= GTS2 − GIS. A midpoint between TS1 and TS2 ∆R∗ can be determined from

simulations.

FIGURE 2. (a) The force-extension curve at the loading rate v = 3.6 × 107 nm/s for

I27. The results are averaged over 100 trajectories. The arrows indicate the position of

∆Rmax1 ≈ 8 Å and ∆Rmax2 = 78 Å. The vertical solid line refers to ∆R∗ ≈ 43 Å. The

inset shows the native state structure of I27 (PDB ID: 1TIT), which contains seven β-

strands labeled as A to G. (b) The time dependence of the end-to-end extension for 10

representative trajectories. Dashed lines refer to the first and the second plateau, which are

located at ∆Rp1 ≈ 6 Å and ∆Rp2 ≈ 78 Å, respectively. The solid straight line corresponds

to ∆R∗ = 42 Å. T = 285 K and f = 75 pN.

FIGURE 3. (a) The same as in Fig. 2a but for DDFLN4. The results are averaged over

100 trajectories. The arrows indicate the position of ∆Rmax1 = 14 Å and ∆Rmax2 = 92

Å. The dashed line refers to ∆R∗ ≈ 53 Å. The inset shows the native state structure of

DDFLN4 taken from PDB (PDB ID: 1KSR). There are seven β-strands: A (6-9), B (22-28),

C (43-48), D (57-59), E (64-69), F (75-83), and G (94-97). In the native state, there are 15,

39, 23, 10, 27, 49, and 20 native contacts formed by strands A, B, C, D, E, F and G with the

rest of the protein, respectively. The end-to-end distance in the native state RNS = 40.2 Å.

(b) The same as in Fig. 2b but for DDFLN4. Dashed lines refer to the first and the second

plateau, which are located at ∆Rp1 ≈ 7 Åand ∆Rp1 ≈ 85 Å, respectively. The solid straight

line corresponds to ∆R∗ = 46 Å. T = 285 K and f = 75 pN.

FIGURE 4. (a) The dependence of fractions of native contacts on the end-to-end extension

for DDFLN4. The results were obtained from the constant loading rate pulling simulations

with v = 3.6 × 107 nm/s as in Fig. 3a. Arrows refer to positions of the peaks in the

force-extension curve in Fig. 3a. (b) A typical snapshot at ∆R ≈ 14 Å. A single contact
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between strands A and F is not broken (solid line), while all 11 native contacts between

strands F and G are already broken (dashed lines). Note that for the cutoff dc = 6.5Å ,

there is only one contact between A and F in the native state. (c) Shown are probabilities

of unfolding pathways Pufpw for seven β-strands. The values of Pufpw are written on top of

the histograms. Results were averaged over 100 trajectories.

FIGURE 5. (a) The force dependencies of unfolding times for τu (circle), τu1 (squares)

and τu2 (diamonds) for I27 at T = 285 K. The straight black lines refer to linear fits in the

Bell approximation for τu1 and τu2. The red curves correspond to the fitting by Eq. (3) with

ν = 1/2. The unfolding barriers, followed from this non-linear fit, are listed in Table. (b)

The same as in (a) but for DDFLN4. The fit curves go up at high forces, where the Eq. (3)

is no longer valid [15].
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