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Abstract— We review the quantum theory of a single spin 

magnetic resonance force microscopy (MRFM). We concentrate 
on the novel technique called oscillating cantilever-driven 
adiabatic reversals (OSCAR), which has been used for a single 
spin detection (Dan Rugar, Talk on the 2004 IEEE NTC 
Quantum Device Technology Workshop). First we describe the 
quantum dynamics of the cantilever-spin system using simple 
estimates in the spirit of the mean field approximation. Then we 
present the results of our computer simulations of the 
Schrödinger equation for the wave function of the cantilever-spin 
system and of the master equation for the density matrix of the 
system. We demonstrate that the cantilever behaves like a quasi-
classical measurement device which detects the spin projection 
along the effective magnetic field. We show that the OSCAR 
technique provides continuous monitoring of the single spin, 
which could be used to detect the mysterious quantum collapses 
of the wave function of the cantilever-spin system. 
 

Index Terms—– Magnetic Resonance Force Microscopy 
(MRFM), adiabatic reversals, wave function collapse, quantum 
jumps, master equation, magnetic noise, micromechanical 
cantilever, quantum decoherence, thermal diffusion, quantum 
entanglement. 
 

I. INTRODUCTION 
HE  theory of single spin magnetic resonance force 

microscopy (MRFM) originated from John Sidles who 
proposed a way to measure the magnetic force produced 

by a single spin combining magnetic resonance, atomic force 
microscopy, and micromechanical resonance of the ultra-
sensitive cantilever [1]. The practical implementation of this 
proposal would allow an atomic scale magnetic imaging 
below the surface of a nontransparent material. Optical as well 
as scanning tunneling microscopy detection of a single spin is 
restricted to the surface atoms. (See, for example, [2]-[3]). In 
his pioneering work John Sidles discussed the detection of a 
single nuclear spin. In reality even detection of a single 
electronic spin is a major challenge for the experimentalists: it 
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requires measurement of a force of the order of a few 
attonewtons. The implementation of a single spin MRFM 
remained elusive until Dan Rugar and his team invented the 
oscillating cantilever-driven adiabatic reversals (OSCAR) 
technique and then demonstrated two spin sensitivity [4]. 

In this paper, we present the theory of the single spin 
OSCAR MRFM. In the second section, we describe the 
OSCAR dynamics in the spirit of the mean field 
approximation and estimate its characteristic parameters. We 
discuss the frequency shift of the cantilever vibrations, the 
thermal noise of the cantilever, the magnetic noise 
experienced by the spin, the opportunity of formation of the 
Schrödinger cat state, the decoherence, the quantum collapses 
of the wave function and the quantum jumps of the cantilever 
spin system. We also discuss the exciting possibility of 
measuring the characteristic time of the wave function 
collapse. In the third section, we present the results of our 
computer simulations of the spin-cantilever dynamics based 
on the Schrödinger equation for the wave function and the 
master equation for the density matrix of the spin-cantilever 
system. Recently other theoretical aspects related to the 
single-spin MRFM have been extensively discussed. (See, for 
example, ref. [5]-[13]). 

 

II. SPIN-CANTILEVER DYNAMICS IN OSCAR: DESCRIPTION 
AND ESTIMATIONS 

 

A. The Basic principles of the OSCAR technique 
The main idea of the OSCAR MRFM technique invented by 

Dan Rugar and his team will now be summarized. An ultra-
sensitive micromechanical cantilever (about 100 nm thick) 
with a ferromagnetic particle (about 1µm size) attached to the 
cantilever tip (CT) oscillates near the surface of a sample with 
a fixed amplitude. Fig.1 shows the OSCAR MRFM setup for 
the “perpendicular geometry.” In its equilibrium position the 
cantilever is perpendicular to the sample surface.  

When the CT with the ferromagnetic particle moves from 
the right endpoint of its trajectory to the left endpoint, the 
dipole field produced by the ferromagnetic particle on the spin 
decreases. Let us consider the effective magnetic field efB in 

the system of coordinates rotating with the rf field. The 
direction of the effective magnetic field reverses in the x-z 
plane from the +z to the –z direction. (We assume that the 
resonant condition Bω γ= , where ω  is the rf frequency, and 

B  is the magnetic field on the spin, is satisfied for the 
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equilibrium position of the CT, and the rotating rf field points 
in the positive x-direction). If the condition of the adiabatic 
motion 2

1| / |   efdB dt Bγ  is satisfied the “average spin” 

S  follows the direction of the effective field.  

 
 

 
 
We assume the electronic spin is initially in its ground state, 

i.e. it points in the negative z-direction (the electronic spin 
points in the direction opposite to its magnetic moment). If the 
rf field is turned on when the CT is at its right end position, 
the effective field points initially in the positive z-direction. In 
the process of adiabatic motion, the spin remains anti-parallel 
to the effective field. The z-component of the spin magnetic 
moment Sµ γ= −  oscillates with the CT frequency. It 

produces a back resonant magnetic force on CT: x zF Gµ= , 
where /zG B x= ∂ ∂  is the gradient of the magnetic field at 
the spin (here and below when we mention CT we mean the 
CT including the ferromagnetic particle; certainly, the 
magnetic force is acting on the ferromagnetic particle). Since 

zµ is proportional to the CT displacement from the 
equilibrium, the magnetic force is also proportional to this CT 
displacement. Thus, the magnetic force influences the 
effective spring constant of CT and consequently the CT 
frequency (which is the fundamental frequency of the 
cantilever). The CT frequency shift can be measured with high 
accuracy – this is the main advantage of the OSCAR 
technique. The direction of the magnetic force acting on CT is 

opposite to the direction of the spring force.  Thus, for the 
electron spin pointing opposite to the effective field, the CT 
frequency will decrease. If the electron spin points in the 
direction of the effective field, the CT frequency will increase.  

Under the conditions of adiabatic motion, the spin 
component along the effective field is an approximate integral 
of motion. Thus, we may consider the CT as a quasi-classical 
device which measures this spin component. However there is 
a very important point: the CT continuously monitors the state 
of the spin. Thus, we may expect the outcome of the OSCAR 
MRFM shown in Fig. 2: the CT frequency shift takes one of 
the two values cδω  or cδω− , depending on the direction of 
the spin relative to the effective field.  Quantum jumps of the 
spin cause jumps in the CT frequency shift. 

 
To increase the measurement sensitivity, Dan Rugar and his 

team implemented a modified technique which is called the 
“interrupted OSCAR” technique. They interrupted the rf field 
periodically (with a period iT of about 10 ms). When the CT 
was at its end point, the applied rf field was interrupted for a 
time interval equal to half of the CT vibration period. At the 
end of the “dead interval” the effective field reverses while the 
spin retains its initial direction. This effect is equivalent to the 
application of the effective π-pulse in the rotating frame. As a 
result the CT frequency shift becomes a periodic function of 
time with twice the interruption period 2 iT . Now the OSCAR 
signal is detected at the frequency 1/(2 )iT .  

 

B. Estimation of the Frequency  
For our estimations we will use the values of parameters 

from ref. [4]. (Although the experiment in [4] was conducted 
with many spins, its setup with two-spin sensitivity is 
probably appropriate for single-spin detection): 

The effective CT spring constant 600 /ck N mµ= ,  
The CT frequency and period   / 2   6.6 c cf kHzω π= = , 

150cT sµ= , 

The CT quality factor 4Q = 5 10× , 

Frequency shift

quantum 
   jump

time

cδω

cδω−
 

 
 
 

Fig. 2. Expected output of a single spin OSCAR  MRFM. cδω  is the 
frequency shift of the CT vibrations. 
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Fig. 1. The OSCAR MRFM setup for the perpendicular geometry. A 
ferromagnetic particle with the magnetic moment m is attached to CT 

and oscillates near the surface of a sample. extB  is the external 

permanent magnetic field; 1B  is the rf rotating field of frequency ω . An 

atomic spin with the magnetic moment µ  is placed not far from the 

sample surface.   
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Fig. 3.  Partial reversals of the effective field. 

The CT amplitude 10A nm= , 
The rotating rf field amplitude and frequency 1 300B Tµ= ,  

  3 ,  ( /   100 )GHz mTω ω γ= = , 
The Rabi frequency and period 

1/ 2 / 2 8.4R Rf B MHzω π γ π= = = , 120RT ns= , 
The magnetic field gradient at a spin location 

/ 430 /zG B x kT m= ∂ ∂ = ,  
The maximum magnetic force on CT  
( )max 4x BF G aNµ= = , 
Temperature 200T mK= , 
The correlation time for the CT frequency shift 3m sτ = . 

 
We now estimate the CT frequency shift in the spirit of the 

mean field approximation. Let the spin be anti-parallel to the 
effective magnetic field efB . Then 

 

( )/ /z ef efz
S S B B= − ,                            (1) 

 
where { }1,  0,  efB B G x= . The net force on CT is given by 

 
x c zF k x G Sγ= − − .                         (2) 

 
Combining these formulas and averaging over fast oscillations 
( 2 2 / 2x A→ ) we obtain  expressions for the relative shift 
of the effective spring constant and the frequency shift, 
 

2 2 2 2 1/ 2
1/[2( )]ck G G A Bδ γ= − + , 

                                                                             (3) 
/ /(2 )c c c cf f k kδ δ= , 

 
which correspond to the numerical values 

7/ 4.7 10c cf fδ −= − ×  and 3cf mHzδ = . For our values of 
parameters 1GA B , and the expression for ckδ  can be 
simplified: 
 

2 /c Bk G Aδ µ= − .                            (4) 
 
This expression has a clear physical meaning: the magnetic 
force on CT cannot be greater than BGµ . That is why the shift 
of the CT spring constant and the frequency shift increases 
with decrease of the amplitude A . 
 Now we discuss the possibility of reducing the CT 
amplitude and increasing the CT frequency shift. The 
condition for the full adiabatic reversals can be represented as 
follows 
 

11 / /R cGA B f f .                        (5) 
 
The left inequality is the condition for full spin reversals 
(between +z and –z directions). The right inequality is the 

condition for adiabatic spin motion. For our 
parameters 1/ 14GA B = , and / 1270R cf f = . To increase the 
CT frequency shift we may sacrifice the full spin reversals 
retaining the adiabatic motion. Fig. 3 shows the partial 
reversals of the effective field. 
 

 
The use of partial adiabatic reversals is convenient for 

computer simulations because it allows us to save 
computational time. Below we show that this idea is not 
appropriate for the experiment as the thermal frequency noise 
also increases with decreasing CT amplitude. 

 

III. THE INTERACTION BETWEEN THE CT-SPIN SYSTEM AND 
ITS ENVIRONMENT. 

 
While the spin is parallel or anti-parallel to the effective 

field, the main manifestation of the CT-environment 
interaction in OSCAR is the thermal frequency noise. Now we 
will estimate its value. The rms coordinate of CT and the 
corresponding rms force are given by 

 
1/ 2( / )rms B cx k T k= , 

(6) 
2 /rms c rmsF k x Q= . 

 
To estimate the characteristic thermal spring constant 

fluctuation T
ckδ  we assume that the “thermal force” increases 

from 0 to rmsF  when the CT coordinate x  changes 

from 0 to A . Thus, /T
c rmsk F Aδ = , and correspondingly, the 

characteristic thermal frequency fluctuation becomes 
 

/ /T
c c rmsf f x AQδ = .                             (7) 

 
The corresponding numerical values are 68rmsx pm= , 

1.6rmsF aN= , and 7/ 1.4 10T
c cf fδ −= × . The estimated 

characteristic CT thermal frequency fluctuation is smaller than 
the OSCAR shift cfδ . On the other hand, one can see that 
thermal frequency fluctuation like the OSCAR frequency shift 
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increases with the decreasing CT amplitude. Thus, the partial 
adiabatic reversals will not increase the signal-to-noise ratio. 

Next, we consider the effect of the spin-environment 
interaction. This interaction can be described in terms of 
magnetic noise acting on the spin. Roughly speaking this 
noise causes a deviation of the spin from the effective field. 
This deviation generates two CT trajectories corresponding to 
the two possible direction of the spin relative to the effective 
field. These two trajectories manifest the formation of the 
Schrödinger cat state. Now the CT-environment interaction 
comes into the play. CT-environment entanglement quickly 
destroys the Schrödinger cat state leaving only one of the two 
possible trajectories. Physically this appears as a quantum 
collapse. Usually, the collapse pushes the spin back to the 
“pre-collapse” direction relative to the effective field. 
Sometimes the spin changes its direction. When a change 
occurs,  we can observe the quantum jump by measuring  the 
sharp change of the CT frequency shift. 

 Currently, the time of collapse is not predictable. We 
believe that understanding the timing of quantum collapses is 
one of the most interesting remaining problems in quantum 
theory. Let us assume that the collapse occurs when the 
separation between the two CT trajectories is of the order of 
the quantum uncertainty of the CT position qX  (by ‘CT 

position’ we mean the position of the center-of-mass of the 
ferromagnetic particle) 

 

( )1/ 2/q c cX kω= .                                 (8) 

 
In this case the characteristic collapse time colt  is of the 

order of the CT period 180cT sµ= . (If we assume that the 
collapse occurs when the separation between the two 
trajectories is about mrsx , which seems very unlikely, then 

4~ 10col ct T .) The CT decoherence time dt  can be estimated 
as  

 
2 2/( )d c c Bt Q k k T xω= ∆ ,                          (9) 

 
where x∆  is the separation between the two trajectories. 

(See, for example, [5]). Taking x∆  to be equal to the quantum 
uncertainty qX  we obtain 2dt sµ= . Thus, we have a typical 

quasi-classical systems situation: the decoherence time is 
much smaller than the time of separation of two trajectories, 
which is the time of formation of the Schrödinger cat state. 
(This is why the Schrödinger cat state is so elusive for quasi-
classical systems.) It indicates that the collapse time depends 
on the CT frequency shift rather than on the decoherence time.  

 Next, we will estimate the characteristic time interval 
between two quantum jumps, jumpt . We assume that the most 

important source of the magnetic noise for the spin is 
associated with the cantilever modes whose frequencies are 
close to the Rabi frequency of the spin. (See, for example, [7], 
[8], [12]). The reason is the following. When the spin changes 
its direction between +z and –z, its frequency in the rotating 

frame changes between its maximum value maxω  and its 
minimum value, which is the Rabi frequency, Rω . Because all 
cantilever modes have the same thermal energy / 2Bk T  the 
thermal amplitude of the mode is inversely proportional to its 
frequency. Thus, the greatest amplitude of the CT thermal 
vibrations is associated with the modes near the Rabi 
frequency. As an estimate, we consider those modes in the 
interval between the Rabi and twice the Rabi frequency. The 
CT thermal amplitude of the Rabi frequency is 

 

( )( )1/ 2/ 2 / 75T
R c R B cA f f k T k fm= = .              (10) 

 
We estimate the correlation time to be the Rabi period TR 

and find the following characteristic angular deviation during 
the correlation time: 

 
4

0 6.8 10T
R RT GA radθ γ −∆ = = × .                  (11) 

 
 
The time of passing the frequency interval ( , 2 )R Rf f  is  
 
 

1 3.4 /( ) 5.8R ct f GAf sγ µ∆ = = .                  (12) 
 

 
Assuming a diffusion process, we can estimate the square of 

the angular deviation during a single reversal: 2
1 1D tθ∆ = ∆ , 

where 2
0 / RD Tθ= ∆  is the diffusion coefficient. The angular 

deviation between the two collapses is 
 
 

2 2
1 /( / 2)col col ct Tθ θ∆ = ∆ ,                 (13) 

 
 

where colt  is the characteristic time between the two 
collapses. The probability of a quantum jump  is 
approximately 

 
2 / 4jump colP θ= ∆ .                      (14) 

 
Using the estimate ( / ) 1jump jump colP t t = , we obtain 

 
 

2 /    /  1.7 ( )   14 T
jump col jump Rt t P A G A sγ = = =  .    (15) 

 
 
The experimental value of the frequency shift correlation 

time in [4] was found to be 3s  but it was obtained for a group 
of spins, not for a single spin. 

 Note that the collapse time cancels out in the final 
expression for the jump time. One of the most mysterious 
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phenomena of the quantum physics – the wave function 
collapse – remains elusive. Let us now discuss the possibility 
of measuring the collapse time in the OSCAR dynamics. 
Between two collapses the second CT trajectory appears 
inside the quantum uncertainty of the first trajectory. Because 
the two trajectories have the opposite sign of the frequency 
shift, the overall CT frequency shift is expected to decrease 
(in absolute value). More rigorously, the shift, jtδ , of the 

time interval between two consecutive passings of the 
equilibrium CT position is expected to decrease in absolute 
value: 

 
2/j c c ct tδ δ πδω ω< = .                          (16) 

 
This change, in principle, could be measured 

experimentally. However our estimate shows that the expected 
change is very small. Defining the probability of two 
trajectories before the collapse as 1P  and 2P  we obtain the 
estimates: 

 
1 2( )j ct t P Pδ δ= − , 

(17) 
2 -5 -  /   / 2  2 10j c c colt t tδ δ δ θ= ∆ = ×  

 
for col ct T= . The effect is negligible because the probability 
of the second trajectory occurring inside the quantum 
uncertainty of the first trajectory is very small. To resolve this 
obstacle we propose using a modification of the interrupted 
OSCAR. Assume one interrupts the microwave for a time 
interval equal to one quarter of the period of the CT 
vibrations. This interruption acts like an effective / 2π -pulse 
in the rotating frame: it generates an angle of / 2π  between 
the effective field and the spin. Now before the collapse, the 
probabilities of both trajectories inside the common quantum 
uncertainty are the same, and the frequency shift (more 
rigorously the shift of jtδ ) is equal to zero. This large change 

in the frequency shift could probably be detected 
experimentally. 

 

IV. SIMULATIONS OF THE OSCAR MRFM 

A. Schrödinger Dynamics 
We start from the Schrödinger description of the CT-spin 

system. The Hamiltonian of the system in the rotating 
reference frame is: 

 
 

2 2  (   ) / 2    2   ( )x x z zH p x S xS t Sε η= + + + + ∆ , 
          (18) 

/R cf fε = ,  /(2 )q cGXη γ ω= . 
The first term describes the CT motion, the second term is 

the interaction between the spin and the rf field, the third term 
is the CT-spin interaction, and the last term describes the 

effects of magnetic noise on the spin due to the spin-
environment interaction. As we have mentioned before, the 
most important source of the magnetic noise is normally 
associated with the cantilever modes near the Rabi frequency. 
This magnetic noise causes a deviation of the spin from the 
effective field primarily when the spin passes through the 
transversal plane. That is why we consider only the z-
component of the magnetic noise field. We do not include the 
CT-environment interaction because the main effect of this 
interaction – the decoherence – cannot be described in the 
scope of the Schrödinger equation.  

 In our simulations we use the following units: 
 
Frequency: 6.6cf kHz= , 
Length: 85qX fm= , 

Momentum: 21/ 1.2 10qX Ns−= × , 

Time: 1/ 24c sω µ= , 
Temperature: / 320c Bk nKω = . 
 
The experimental values of our parameters in these units are 

the following: the amplitude 51.2 10A = × , the temperature 
56.25 10T = × , 1270ε = , 0.078η = . Unfortunately these 

values of parameters are outside the scope of our computer 
capabilities. Thus, we simulate the CT-spin dynamics taking 

13A = , 10ε = , 0.3η = . The conditions for the full adiabatic 
reversals in terms of our parameters, 

 
22 Aε η ε ,                               (19) 

 
are clearly violated because 2 7.8Aη = . In this case, we have 
partial adiabatic reversals with a relatively large CT frequency 
shift 

 
2 2 2 2 1/ 2 3/(2 ) 8 10cf Aδ η η ε −= + = × .            (20) 

 
The wave function of the system is a spinor ( , )su x t , where 

the spin variable s  takes the two values 1/ 2s = ± . (We use 
the zS -representation). The initial wave function was taken in 
the form of the product of the CT part, ( )cu x , and the spin 
part, which describes the direction of the average spin. The 
CT part of the wave function describes the quasi-classical 
coherent state, 

 
21/ 2( ) ( ),  /( !) exp( / 2)n

c n n nu x A u x A nα α = = − ∑ , 

(21) 
( )(0) (0) / 2xx i pα = + , (0) ,  (0) 0xx A p= = ,  

 
where ( )nu x  are the eigenfunctions of the harmonic oscillator 
Hamiltonian.  

First, we consider the CT-spin dynamics with no magnetic 
noise. If the initial average spin points opposite to the 
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effective field { },  0,  2 ( )x tε η , then the wave function 

remains to be the product of the CT and spin parts. The 
probability density 2( , )s

s
P u x t= ∑  represents a single peak 

oscillating with the frequency, ( )1 cδω− . The value of 
37.9 10cδω −= ×  is very close to the estimated value. The 

same is true for the initial average spin pointing in the 
direction of the effective field. The only difference is the 
frequency of oscillations, which is now equal to ( )1 cδω+ . If 

the initial average spin makes an angle π θ−  with the 
effective field (see Fig. 4) the wave function describes an 
entangled CT-spin state. 

 
 

 
 

 The probability density peak gradually splits into two 
peaks. (See Fig. 5). Thus, the wave function describes the 
Schrödinger cat state of the CT-spin system.  

 
 

The first peak oscillates with the frequency ( )1 cδω− , and 

the second peak oscillates with the frequency ( )1 cδω+ . Note 

that both components of the spinor ( , )su x t  contribute to 
every peak. If we consider only the part of the wave function 
describing one of the peaks then it can be decomposed into the 
product of the CT part and the spin part with the average spin 
pointing in (or opposite to) the direction of the effective field 
corresponding to this peak. (Note that the effective fields 
corresponding to the two peaks are not anti-parallel to each 
other.) The area under the first peak is 2sin ( / 2)θ , and the 

area under the second is 2cos ( / 2)θ . All these facts prove that 
the CT-spin dynamics exhibits the Stern-Gerlach effect: the 
two spin directions relative to the effective field generate two 
separate CT trajectories.  

 Next we include the effect of the magnetic noise. We 
assume the noise field, ( )t∆ , to be a random telegraph signal 
with amplitude 0∆ . The time interval between two “kicks” of 

the noisy field is taken randomly from the interval, 
(  -  / 4,    / 4)R R R RT T T T+ . The initial average spin points 
opposite to the effective field. Fig. 6 demonstrates the shift of 
the time interval between two consecutive passes through the 
CT equilibrium position before the split of the two CT 
trajectories. One can see a decrease in the time interval shift 
for 0 0.3∆ =  and 0 0.5∆ = . (For the experimental value, 

0 0.13T
RGA∆ = = , this effect is negligible.) 

 Gradually the probability peak splits into two peaks but in 
this case the two trajectories are generated by the noisy field 
rather than the initial conditions.   

       

B. Master Equation 
In order to describe the CT decoherence and the thermal 

diffusion we consider an ensemble of the CT-spin systems 

z

x

θ

(0)efB

(0)S

 
 
Fig.4. The initial average spin makes an angle π θ−  with the 

effective field. 
 

-13 0 13

x

( , )P x t

 
Fig. 5. The Schrödinger cat state of the CT-spin system. 
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3
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δτ j 

 1         2         3         4         5         6
0.022

0.023

0.024
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Fig. 6. The shift of the time interval between the consecutive passes 

through the CT equilibrium positions for 0 0∆ =  (1), 0 0.3∆ =  (2), 

and 0 0.5∆ =  (3). The estimated value of the shift is 

0.0248c ctδ πδω= = . 
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Fig. 7. The typical shapes for the modulus of the reduced CT density 

matrix (a) before - and (b) after the disappearance of the non-diagonal 
peaks.  

interacting with the environment. We use the Caldeira-Leggett 
master equation for the density matrix: 

 
 

[ ]

ˆ     ( , , , , ) ( , , , , )

     ( , , , , ) ( , , , , ) ,
2

x x s s t L x x s s t

i x x s s t x x s s t

ρ ρ
τ

ε ρ ρ

∂ ′ ′ ′ ′= −
∂

′ ′ ′ ′− − −
 

 

( ) ( )

( )

2 2
2 2

2 2

2

1ˆ
2 2 2

              2 ( ).

i iL x x x x
Qx x

T x x i x s xs
Q

η

 ∂ ∂ ′ ′= − − − − − −  ′∂ ∂ 

′ ′ ′− − −

 

(22) 
1 1 1 1, ,
2 2 2 2

1 1 1 1, ,
2 2 2 2

  

( , , , , )
  

R R

x x s s
R R

ρ τ
−

− − −

 
 

′ ′ =  
  
 

 

 

We cannot demonstrate the CT decoherence if the 
decoherence time is smaller than the time of formation of two 
CT trajectories (the Schrödinger cat state). Thus, to simulate 
the decoherence, we use the very low temperature 20T =  
(instead of the experimental value 56.25 10T = × ). To save the 
computer time we use 8A =  and 1000Q = . The values of ε  
and η  are the same those we have used for the Schrödinger 
dynamics, and 0 0∆ = . The initial density matrix is taken as a 
product of the CT and spin parts: 

 
( , , , ,0) ( , ) ( , )x x s s R x x s sρ ′ ′ ′ ′= Λ , 

(23) 
*( , ) ( ) ( )c cR x x u x u x′ ′= , (0)x A= , (0) 0xp = . 

 
 
If the initial direction of the average spin is anti-parallel or 

parallel to the effective field, the density matrix remains a 
product of the CT part and the spin part. The modulus of the 
CT part describes a single peak, which oscillates along the 
diagonal x x′=  with the frequency ( )1 cδω−  or ( )1 cδω+ . 

This peak spreads along the diagonal demonstrating the 
thermal diffusion of the ensemble. The situation changes if the 
initial average spin makes an angle θ  with the effective field, 

0,  θ π≠ . In this case the CT and the spin become entangled 
and the initial peak of the modulus of the reduced CT density 

matrix ( , , , , )
s

x x s s tρ ρ ′= ∑  splits into four peaks. As an 

example, Fig. 7 demonstrates two typical shapes of the 
reduced CT density matrix if / 2θ π= . 

After the split of the initial peak, one can observe non-
diagonal peaks, which describe the coherence between the two 
CT trajectories (the Schrödinger cat state). These peaks 
quickly disappear demonstrating the CT decoherence. 
Subsequently, the remaining diagonal peaks describe the 
statistical mixture of the two CT trajectories corresponding to 
the two spin directions relative to the effective field. These 
peaks spread along the diagonal x x′=  demonstrating the 
thermal diffusion in the ensemble. If we consider only the part 
of the density matrix describing one of the diagonal peaks 
then it can be decomposed into the product of the CT and spin 
parts with the average spin pointing in (or opposite) the 
direction of the effective field corresponding to this peak. 
Thus the master equation allows us to simulate the CT-spin 
decoherence if the decoherence time is greater than the time of 
the Schrödinger cat formation. Also using the master equation 
we can demonstrate the process of the thermal diffusion.  

 

V. CONCLUSION 
 

 In this paper we have presented a theory of the single-spin 
OSCAR MRFM. We presented estimates for the three main 
experimental parameters of the OSCAR technique: the CT 
frequency shift, the frequency noise, and the characteristic 
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time between the spin quantum jumps. We proposed an 
experiment for measuring the most elusive parameter: the 
average time interval between the collapses of the CT-spin 
wave function. We also reported the results of computer 
simulations using both the Schrödinger equation and the 
master equation. Our simulations demonstrate that CT can be 
considered as a quasi-classical device, which measures the 
spin direction relative to the effective magnetic field.  

At the 2004 IEEE NTC Quantum Device Technology 
Workshop Dan Rugar reported the first experimental detection 
of a single atomic spin using OSCAR MRFM. This historical 
event marks the beginning of experimental single-spin 
imaging in condensed matter. The next step will be the 
continuous single-spin measurement. We hope that besides 
tremendous imaging and quantum information processing 
applications the OSCAR MRFM will allow one to measure 
one of the most mysterious events in the quantum physics – 
the collapse of the wave function.  
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